To build a dynamic automated process where the steps (queries or DataFrame operations) are read from a table, so you can design a flexible framework

To standardize the process of updating the metadata table and include version control, we can implement the following:


1. Metadata Management Approach

  1. Version Control in Metadata Table:
    • Add a version column to track changes to queries or logic.
    • Use a status column to differentiate between active and inactive records.
    • Introduce created_at and updated_at timestamps for auditing purposes.
  2. Standardized Update Process:
    • Use a template or form for metadata updates.
    • Maintain a change log to document changes in logic and their rationale.
  3. Review & Approval Workflow:
    • Require changes to metadata to go through a review process before activation.
    • Store updates in a staging table before moving them to the active metadata table.
  4. Version History:
    • Maintain all previous versions of the metadata in the same table (using version and status).
    • Allow rollback to previous versions if needed.

2. Updated Metadata Table Schema

CREATE TABLE IF NOT EXISTS metadatatable (
    program_name STRING,
    product_name STRING,
    stage_name STRING,
    step_name STRING,
    version INT DEFAULT 1, -- Version number
    status STRING DEFAULT 'active', -- active or inactive
    operation_type STRING, -- SQL, DataFrame
    query TEXT,
    custom_logic TEXT,
    temp_view_name STRING,
    table_name STRING,
    write_mode STRING, -- overwrite, append, archive, snapshot
    snapshot_mode STRING,
    stage_priority INT,
    steps_priority INT,
    month_year STRING,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

3. Version Control Logic

a) Adding a New Query

When adding a new step or query:

  1. Increment Version: Ensure the version for the new step is 1.
  2. Set Status to Active: Mark the new step as active.

Example:

INSERT INTO metadatatable (
    program_name, product_name, stage_name, step_name, version, status, operation_type, query, 
    custom_logic, temp_view_name, table_name, write_mode, snapshot_mode, stage_priority, 
    steps_priority, month_year, created_at, updated_at
)
VALUES (
    'Risk Program', 'Personal Loan', 'Stage 1', 'New Logic Step', 1, 'active', 'SQL', 
    'SELECT * FROM transactions WHERE risk_score > 700', 
    NULL, 'filtered_view', 'high_risk_table', 'overwrite', NULL, 1, 3, '202412', CURRENT_TIMESTAMP, CURRENT_TIMESTAMP
);

b) Modifying an Existing Query

When updating an existing step:

  1. Set the Old Step to Inactive: Update the status of the current step to inactive.
  2. Insert a New Version: Insert the new query with an incremented version.

Example:

-- Mark the existing query as inactive
UPDATE metadatatable
SET status = 'inactive', updated_at = CURRENT_TIMESTAMP
WHERE program_name = 'Risk Program' AND product_name = 'Personal Loan' 
  AND stage_name = 'Stage 1' AND step_name = 'New Logic Step' AND status = 'active';

-- Insert the updated query with a new version
INSERT INTO metadatatable (
    program_name, product_name, stage_name, step_name, version, status, operation_type, query, 
    custom_logic, temp_view_name, table_name, write_mode, snapshot_mode, stage_priority, 
    steps_priority, month_year, created_at, updated_at
)
VALUES (
    'Risk Program', 'Personal Loan', 'Stage 1', 'New Logic Step', 2, 'active', 'SQL', 
    'SELECT * FROM transactions WHERE risk_score > 750', 
    NULL, 'filtered_view', 'high_risk_table', 'overwrite', NULL, 1, 3, '202412', CURRENT_TIMESTAMP, CURRENT_TIMESTAMP
);

c) Rolling Back to a Previous Version

To roll back to a previous version:

  1. Set Current Version to Inactive: Mark the current version as inactive.
  2. Reactivate the Previous Version: Update the status of the required version to active.

Example:

-- Mark the current version as inactive
UPDATE metadatatable
SET status = 'inactive', updated_at = CURRENT_TIMESTAMP
WHERE program_name = 'Risk Program' AND product_name = 'Personal Loan' 
  AND stage_name = 'Stage 1' AND step_name = 'New Logic Step' AND status = 'active';

-- Reactivate the previous version
UPDATE metadatatable
SET status = 'active', updated_at = CURRENT_TIMESTAMP
WHERE program_name = 'Risk Program' AND product_name = 'Personal Loan' 
  AND stage_name = 'Stage 1' AND step_name = 'New Logic Step' AND version = 1;

4. Automation of Metadata Updates

a) Python Script for Metadata Updates

Use a script to automate updates to the metadata table.

from pyspark.sql import SparkSession
from datetime import datetime

# Initialize SparkSession
spark = SparkSession.builder 
    .appName("Metadata Update Process") 
    .enableHiveSupport() 
    .getOrCreate()

def update_metadata(metadata_table, changes):
    for change in changes:
        step_name = change["step_name"]
        program_name = change["program_name"]
        product_name = change["product_name"]
        stage_name = change["stage_name"]
        new_query = change["query"]
        new_custom_logic = change.get("custom_logic", None)
        version = change.get("version", None)

        # Mark the current version inactive
        spark.sql(f"""
            UPDATE {metadata_table}
            SET status = 'inactive', updated_at = CURRENT_TIMESTAMP
            WHERE program_name = '{program_name}' AND product_name = '{product_name}' 
              AND stage_name = '{stage_name}' AND step_name = '{step_name}' AND status = 'active'
        """)

        # Insert the new version
        spark.sql(f"""
            INSERT INTO {metadata_table} (
                program_name, product_name, stage_name, step_name, version, status, 
                operation_type, query, custom_logic, temp_view_name, table_name, write_mode, 
                snapshot_mode, stage_priority, steps_priority, month_year, created_at, updated_at
            )
            SELECT 
                '{program_name}', '{product_name}', '{stage_name}', '{step_name}', 
                COALESCE(MAX(version), 0) + 1 AS version, 'active', 
                operation_type, '{new_query}', '{new_custom_logic}', temp_view_name, 
                table_name, write_mode, snapshot_mode, stage_priority, steps_priority, 
                month_year, CURRENT_TIMESTAMP, CURRENT_TIMESTAMP
            FROM {metadata_table}
            WHERE program_name = '{program_name}' AND product_name = '{product_name}' 
              AND stage_name = '{stage_name}' AND step_name = '{step_name}'
        """)

# Example Changes
changes = [
    {
        "program_name": "Risk Program",
        "product_name": "Personal Loan",
        "stage_name": "Stage 1",
        "step_name": "New Logic Step",
        "query": "SELECT * FROM transactions WHERE risk_score > 800",
        "custom_logic": None
    }
]

# Update Metadata Table
update_metadata("metadatatable", changes)

5. Best Practices

  1. Audit Trail:
    • Always retain previous versions for audit and rollback purposes.
  2. Validation:
    • Validate all new queries or logic before updating the metadata.
  3. Testing:
    • Maintain a test environment to validate metadata changes before promoting them to production.
  4. Automation:
    • Use scripts to automate metadata updates, ensuring consistency and reducing manual errors.
  5. Change Log:
    • Maintain a separate table or document to log metadata changes, including who made the changes and why.

This framework ensures transparency, traceability, and rollback capabilities for metadata management in your ETL process.


Discover more from HintsToday

Subscribe to get the latest posts sent to your email.

Pages ( 5 of 5 ): « Previous1 ... 34 5
Skills

Posted on

January 2, 2025