To standardize the process of updating the metadata table and include version control, we can implement the following:
1. Metadata Management Approach
- Version Control in Metadata Table:
- Add a
version
column to track changes to queries or logic. - Use a
status
column to differentiate betweenactive
andinactive
records. - Introduce
created_at
andupdated_at
timestamps for auditing purposes.
- Add a
- Standardized Update Process:
- Use a template or form for metadata updates.
- Maintain a change log to document changes in logic and their rationale.
- Review & Approval Workflow:
- Require changes to metadata to go through a review process before activation.
- Store updates in a staging table before moving them to the active metadata table.
- Version History:
- Maintain all previous versions of the metadata in the same table (using
version
andstatus
). - Allow rollback to previous versions if needed.
- Maintain all previous versions of the metadata in the same table (using
2. Updated Metadata Table Schema
CREATE TABLE IF NOT EXISTS metadatatable (
program_name STRING,
product_name STRING,
stage_name STRING,
step_name STRING,
version INT DEFAULT 1, -- Version number
status STRING DEFAULT 'active', -- active or inactive
operation_type STRING, -- SQL, DataFrame
query TEXT,
custom_logic TEXT,
temp_view_name STRING,
table_name STRING,
write_mode STRING, -- overwrite, append, archive, snapshot
snapshot_mode STRING,
stage_priority INT,
steps_priority INT,
month_year STRING,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
3. Version Control Logic
a) Adding a New Query
When adding a new step or query:
- Increment Version: Ensure the
version
for the new step is1
. - Set Status to Active: Mark the new step as
active
.
Example:
INSERT INTO metadatatable (
program_name, product_name, stage_name, step_name, version, status, operation_type, query,
custom_logic, temp_view_name, table_name, write_mode, snapshot_mode, stage_priority,
steps_priority, month_year, created_at, updated_at
)
VALUES (
'Risk Program', 'Personal Loan', 'Stage 1', 'New Logic Step', 1, 'active', 'SQL',
'SELECT * FROM transactions WHERE risk_score > 700',
NULL, 'filtered_view', 'high_risk_table', 'overwrite', NULL, 1, 3, '202412', CURRENT_TIMESTAMP, CURRENT_TIMESTAMP
);
b) Modifying an Existing Query
When updating an existing step:
- Set the Old Step to Inactive: Update the
status
of the current step toinactive
. - Insert a New Version: Insert the new query with an incremented
version
.
Example:
-- Mark the existing query as inactive
UPDATE metadatatable
SET status = 'inactive', updated_at = CURRENT_TIMESTAMP
WHERE program_name = 'Risk Program' AND product_name = 'Personal Loan'
AND stage_name = 'Stage 1' AND step_name = 'New Logic Step' AND status = 'active';
-- Insert the updated query with a new version
INSERT INTO metadatatable (
program_name, product_name, stage_name, step_name, version, status, operation_type, query,
custom_logic, temp_view_name, table_name, write_mode, snapshot_mode, stage_priority,
steps_priority, month_year, created_at, updated_at
)
VALUES (
'Risk Program', 'Personal Loan', 'Stage 1', 'New Logic Step', 2, 'active', 'SQL',
'SELECT * FROM transactions WHERE risk_score > 750',
NULL, 'filtered_view', 'high_risk_table', 'overwrite', NULL, 1, 3, '202412', CURRENT_TIMESTAMP, CURRENT_TIMESTAMP
);
c) Rolling Back to a Previous Version
To roll back to a previous version:
- Set Current Version to Inactive: Mark the current version as inactive.
- Reactivate the Previous Version: Update the status of the required version to
active
.
Example:
-- Mark the current version as inactive
UPDATE metadatatable
SET status = 'inactive', updated_at = CURRENT_TIMESTAMP
WHERE program_name = 'Risk Program' AND product_name = 'Personal Loan'
AND stage_name = 'Stage 1' AND step_name = 'New Logic Step' AND status = 'active';
-- Reactivate the previous version
UPDATE metadatatable
SET status = 'active', updated_at = CURRENT_TIMESTAMP
WHERE program_name = 'Risk Program' AND product_name = 'Personal Loan'
AND stage_name = 'Stage 1' AND step_name = 'New Logic Step' AND version = 1;
4. Automation of Metadata Updates
a) Python Script for Metadata Updates
Use a script to automate updates to the metadata table.
from pyspark.sql import SparkSession
from datetime import datetime
# Initialize SparkSession
spark = SparkSession.builder
.appName("Metadata Update Process")
.enableHiveSupport()
.getOrCreate()
def update_metadata(metadata_table, changes):
for change in changes:
step_name = change["step_name"]
program_name = change["program_name"]
product_name = change["product_name"]
stage_name = change["stage_name"]
new_query = change["query"]
new_custom_logic = change.get("custom_logic", None)
version = change.get("version", None)
# Mark the current version inactive
spark.sql(f"""
UPDATE {metadata_table}
SET status = 'inactive', updated_at = CURRENT_TIMESTAMP
WHERE program_name = '{program_name}' AND product_name = '{product_name}'
AND stage_name = '{stage_name}' AND step_name = '{step_name}' AND status = 'active'
""")
# Insert the new version
spark.sql(f"""
INSERT INTO {metadata_table} (
program_name, product_name, stage_name, step_name, version, status,
operation_type, query, custom_logic, temp_view_name, table_name, write_mode,
snapshot_mode, stage_priority, steps_priority, month_year, created_at, updated_at
)
SELECT
'{program_name}', '{product_name}', '{stage_name}', '{step_name}',
COALESCE(MAX(version), 0) + 1 AS version, 'active',
operation_type, '{new_query}', '{new_custom_logic}', temp_view_name,
table_name, write_mode, snapshot_mode, stage_priority, steps_priority,
month_year, CURRENT_TIMESTAMP, CURRENT_TIMESTAMP
FROM {metadata_table}
WHERE program_name = '{program_name}' AND product_name = '{product_name}'
AND stage_name = '{stage_name}' AND step_name = '{step_name}'
""")
# Example Changes
changes = [
{
"program_name": "Risk Program",
"product_name": "Personal Loan",
"stage_name": "Stage 1",
"step_name": "New Logic Step",
"query": "SELECT * FROM transactions WHERE risk_score > 800",
"custom_logic": None
}
]
# Update Metadata Table
update_metadata("metadatatable", changes)
5. Best Practices
- Audit Trail:
- Always retain previous versions for audit and rollback purposes.
- Validation:
- Validate all new queries or logic before updating the metadata.
- Testing:
- Maintain a test environment to validate metadata changes before promoting them to production.
- Automation:
- Use scripts to automate metadata updates, ensuring consistency and reducing manual errors.
- Change Log:
- Maintain a separate table or document to log metadata changes, including who made the changes and why.
This framework ensures transparency, traceability, and rollback capabilities for metadata management in your ETL process.
Discover more from HintsToday
Subscribe to get the latest posts sent to your email.