Window functions in PySpark allow you to perform operations on a subset of your data using a “window” that defines a range of rows. These functions are similar to SQL window functions and are useful for tasks like ranking, cumulative sums, and moving averages. Let’s go through various PySpark DataFrame window functions, compare them with Spark SQL window functions, and provide examples with a large sample dataset.

PySpark’s window functions allow operations across a specified “window” of rows, such as performing aggregations, ranking, or comparisons. The functionality mimics SQL window functions but uses PySpark’s syntax.


Syntax Structure

Define a Window Specification: The Window object specifies how rows are partitioned and ordered for the operation.

from pyspark.sql.window import Window 
window_spec = Window.partitionBy("column1").orderBy("column2")

Apply the Window Function: Use PySpark functions like row_number()rank()dense_rank(), etc., with the window specification.

from pyspark.sql.functions import row_number, rank, dense_rank, sum 
df.withColumn("row_num", row_number().over(window_spec))

Window Specification Options

OptionDescriptionSyntax
partitionBy()Divides the data into partitions for independent calculations.Window.partitionBy("column1")
orderBy()Specifies the order of rows within each partition.Window.orderBy("column2")
rowsBetween()Defines a window frame by rows relative to the current row..rowsBetween(-1, 1)
rangeBetween()Defines a window frame based on the range of values in the ordering column..rangeBetween(-10, 10)
unboundedPrecedingIndicates all rows before the current row in the partition.Window.rowsBetween(Window.unboundedPreceding, 0)
unboundedFollowingIndicates all rows after the current row in the partition.Window.rowsBetween(0, Window.unboundedFollowing)
currentRowRefers to the current row in the partition.Window.rowsBetween(Window.currentRow, Window.currentRow)

Common PySpark Window Functions

FunctionDescription
row_number()Assigns a unique number to each row in a window.
rank()Assigns a rank to each row, with gaps for ties.
dense_rank()Assigns a rank to each row, without gaps for ties.
ntile(n)Divides rows into n buckets and assigns a bucket number to each row.
lead(column, n)Returns the value of the column from n rows ahead of the current row.
lag(column, n)Returns the value of the column from n rows behind the current row.
first()Returns the first value in the window frame.
last()Returns the last value in the window frame.
sum()Computes the sum of the column over the window frame.
avg()Computes the average of the column over the window frame.
max()Returns the maximum value of the column over the window frame.
min()Returns the minimum value of the column over the window frame.
count()Returns the count of rows in the window frame.

When using the RANK window function in Spark SQL or DataFrame API, if there are duplicates within a partition, the behavior is as follows:

  • The RANK function assigns the same rank to duplicate values.
  • The next rank value is skipped. For example, if two rows have the same value and are assigned rank 1, the next row will be assigned rank 3.

Here’s an example:

+--------+-------+
|  value | rank  |
+--------+-------+
|     10 |     1 |
|     10 |     1 |
|      9 |     3 |
|      8 |     4 |
+--------+-------+

In contrast, the DENSE_RANK function does not skip rank values. If there are duplicates, the next rank value will be consecutive.

+--------+-----------+
|  value | dense_rank|
+--------+-----------+
|     10 |         1 |
|     10 |         1 |
|      9 |         2 |
|      8 |         3 |
+--------+-----------+

Examples

1. Ranking Employees by Salary

from pyspark.sql.window import Window
from pyspark.sql.functions import row_number, rank, dense_rank

data = [(1, "Alice", 5000), (2, "Bob", 6000), (3, "Charlie", 4000), (4, "Alice", 7000)]
columns = ["EmpID", "Name", "Salary"]

df = spark.createDataFrame(data, columns)

window_spec = Window.partitionBy("Name").orderBy("Salary")

df = df.withColumn("row_number", row_number().over(window_spec)) 
       .withColumn("rank", rank().over(window_spec)) 
       .withColumn("dense_rank", dense_rank().over(window_spec))

df.show()

Output:

EmpIDNameSalaryrow_numberrankdense_rank
3Charlie4000111
1Alice5000111
4Alice7000222
2Bob6000111

2. Cumulative Sum

from pyspark.sql.functions import sum

window_spec = Window.partitionBy("Name").orderBy("Salary").rowsBetween(Window.unboundedPreceding, Window.currentRow)

df = df.withColumn("cumulative_sum", sum("Salary").over(window_spec))
df.show()

Output:

EmpIDNameSalarycumulative_sum
3Charlie40004000
1Alice50005000
4Alice700012000
2Bob60006000

Options for Handling NULLs

  1. Exclude NULLs in Order: Use NULLS FIRST or NULLS LAST in orderBy(). Window.orderBy(col("Salary").desc().asc_nulls_last())
  2. Filter NULLs in Partition: Use .filter() before applying the window function. df.filter(col("Salary").isNotNull())

Important Notes

  • PartitionBy: Breaks data into logical groups for independent calculations.
  • OrderBy: Determines the order within each partition.
  • Frame Specification: Allows cumulative, rolling, or specific-frame calculations using rowsBetween or rangeBetween

Setting Up the Environment

First, let’s set up the environment and create a sample dataset.

from pyspark.sql import SparkSession
from pyspark.sql.window import Window
from pyspark.sql.functions import col, row_number, rank, dense_rank, percent_rank, ntile, lag, lead, sum, avg

# Initialize Spark session
spark = SparkSession.builder
.appName("PySpark Window Functions")
.getOrCreate()

# Create a sample dataset
data = [(1, "Alice", 1000),
(2, "Bob", 1200),
(3, "Catherine", 1200),
(4, "David", 800),
(5, "Eve", 950),
(6, "Frank", 800),
(7, "George", 1200),
(8, "Hannah", 1000),
(9, "Ivy", 950),
(10, "Jack", 1200)]
columns = ["id", "name", "salary"]

df = spark.createDataFrame(data, schema=columns)
df.show()

PySpark Window Functions

1. Row Number

The row_number function assigns a unique number to each row within a window partition.

windowSpec = Window.partitionBy("salary").orderBy("id")
df.withColumn("row_number", row_number().over(windowSpec)).show()

2. Rank

The rank function provides ranks to rows within a window partition, with gaps in ranking.

df.withColumn("rank", rank().over(windowSpec)).show()

3. Dense Rank

The dense_rank function provides ranks to rows within a window partition, without gaps in ranking.

df.withColumn("dense_rank", dense_rank().over(windowSpec)).show()

4. Percent Rank

The percent_rank function calculates the percentile rank of rows within a window partition.

df.withColumn("percent_rank", percent_rank().over(windowSpec)).show()

5. NTile

The ntile function divides the rows within a window partition into n buckets.

df.withColumn("ntile", ntile(4).over(windowSpec)).show()

6. Lag

The lag function provides access to a row at a given physical offset before the current row within a window partition.

df.withColumn("lag", lag("salary", 1).over(windowSpec)).show()

7. Lead

The lead function provides access to a row at a given physical offset after the current row within a window partition.

df.withColumn("lead", lead("salary", 1).over(windowSpec)).show()

8. Cumulative Sum

The sum function calculates the cumulative sum of values within a window partition.

df.withColumn("cumulative_sum", sum("salary").over(windowSpec)).show()

9. Moving Average

The avg function calculates the moving average of values within a window partition.

df.withColumn("moving_avg", avg("salary").over(windowSpec)).show()


Discover more from HintsToday

Subscribe to get the latest posts sent to your email.

Pages ( 1 of 4 ): 1 234Next »

Discover more from HintsToday

Subscribe now to keep reading and get access to the full archive.

Continue reading