Useful Code Snippets in Python and Pyspark

dbname.table_name want to save dbname and table_name in seperate variable and then to pass them as parameters in pyspark/python script

# String containing dbname and table_name
full_table_name = "my_database.my_table"

# Split into dbname and table_name
dbname, table_name = full_table_name.split('.')

# Print the variables
print(f"Database Name: {dbname}")
print(f"Table Name: {table_name}")

# Use these variables in a PySpark job
query = f"SELECT * FROM {dbname}.{table_name} WHERE some_column = 'some_value'"

# Example usage in PySpark
df = spark.sql(query)
df.show()

import argparse
from pyspark.sql import SparkSession

# Initialize Spark
spark = SparkSession.builder.appName("Database Table Processing").getOrCreate()

# Argument parser
parser = argparse.ArgumentParser(description="Process a database table")
parser.add_argument("--dbname", required=True, help="Database name")
parser.add_argument("--table_name", required=True, help="Table name")

# Parse the arguments
args = parser.parse_args()
dbname = args.dbname
table_name = args.table_name

# Use dbname and table_name in your query
query = f"SELECT * FROM {dbname}.{table_name} WHERE some_column = 'some_value'"

# Execute the query in PySpark
df = spark.sql(query)
df.show()

import argparse
from pyspark.sql import SparkSession

# Initialize Spark
spark = SparkSession.builder.appName("Database Table Processing").getOrCreate()

# Argument parser
parser = argparse.ArgumentParser(description="Process a database table")
parser.add_argument("--dbname", required=True, help="Database name")
parser.add_argument("--table_name", required=True, help="Table name")

# Parse the arguments
args = parser.parse_args()
dbname = args.dbname
table_name = args.table_name

# Use dbname and table_name in your query
query = "SELECT * FROM {}.{} WHERE some_column = 'some_value'".format(dbname, table_name)

# Execute the query in PySpark
df = spark.sql(query)
df.show()


spark-submit myscript.py --dbname my_database --table_name my_table

To create a list of columns from a Pandas DataFrame or PySpark DataFrame, formatted with different delimiters or enclosed in quotes.

Pandas DataFrame

Example DataFrame

import pandas as pd

df = pd.DataFrame({
    "col1": [1, 2],
    "col2": [3, 4],
    "col3": [5, 6]
})

Creating a List of Columns

# Get column names
columns = df.columns.tolist()

# Separate by comma
comma_separated = ", ".join(columns)
print("Comma-separated:", comma_separated)

# Separate by space
space_separated = " ".join(columns)
print("Space-separated:", space_separated)

# Enclose in quotes and separate by comma
quoted_comma_separated = ", ".join(f"'{col}'" for col in columns)
print("Quoted, comma-separated:", quoted_comma_separated)

For PySpark DataFrame

Example DataFrame

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("ColumnListExample").getOrCreate()

data = [(1, 3, 5), (2, 4, 6)]
columns = ["col1", "col2", "col3"]
df = spark.createDataFrame(data, columns)

Creating a List of Columns

# Get column names
columns = df.columns

# Separate by comma
comma_separated = ", ".join(columns)
print("Comma-separated:", comma_separated)

# Separate by space
space_separated = " ".join(columns)
print("Space-separated:", space_separated)

# Enclose in quotes and separate by comma
quoted_comma_separated = ", ".join(f"'{col}'" for col in columns)
print("Quoted, comma-separated:", quoted_comma_separated)

Outputs

For the DataFrame columns ["col1", "col2", "col3"], you would get:

  1. Comma-separated: col1, col2, col3
  2. Space-separated: col1 col2 col3
  3. Quoted, comma-separated: 'col1', 'col2', 'col3'

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Latest Posts

Discover more from HintsToday

Subscribe now to keep reading and get access to the full archive.

Continue reading